on isomorphism of simplicial complexes and their related algebras
Authors
abstract
similar resources
On isomorphism of simplicial complexes and their related rings
In this paper, we provide a simple proof for the fact that two simplicial complexes are isomorphic if and only if their associated Stanley-Reisner rings, or their associated facet rings are isomorphic as K-algebras. As a consequence, we show that two graphs are isomorphic if and only if their associated edge rings are isomorphic as K-algebras. Based on an explicit K-algebra isomorphism of two S...
full textIncidence algebras of simplicial complexes
With any locally finite partially ordered set K its incidence algebra Ω(K) is associated. We shall consider algebras over fields with characteristic zero. In this case there is a correspondence K ↔ Ω(K) such that the poset K can be reconstructed from its incidence algebra up to an isomorphism — due to Stanley theorem. In the meantime, a monotone mapping between two posets in general induces no ...
full textCombinatorial Hopf Algebras of Simplicial Complexes
We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these combinatorial Hopf algebras give rise to symmetric functions that encode information about colorings of simplicial complexes and their f -vectors. We al...
full textthe impact of attending efl classes on the level of depression of iranian female learners and their attributional complexity
می توان گفت واقعیت چند لایه ا ی کلاس های زبان انگلیسی بسیار حائز اهمیت است، زیرا عواطف و بینش های زبان آموزان تحت تاثیر قرار می گیرد. در پژوهش پیش رو، گفته می شود که دبیران با در پیش گرفتن رویکرد فرا-انسانگرایی ، قادرند در زندگی دانش آموزانشان نقش مهمی را ایفا سازند. بر اساس گفته ی ویلیامز و بردن (2000)، برای کرل راجرز، یکی از بنیان گذاران رویکرد انسانگرایی ، یادگیری بر مبنای تجربه، نوعی از یاد...
Flows on Simplicial Complexes
Given a graph G, the number of nowhere-zero Zq-flows φG(q) is known to be a polynomial in q. We extend the definition of nowhere-zero Zq-flows to simplicial complexes ∆ of dimension greater than one, and prove the polynomiality of the corresponding function φ∆(q) for certain q and certain subclasses of simplicial complexes. Résumé. Et́ant donné une graphe G, on est connu que le nombre de Zq-flot...
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyPublisher: iranian mathematical society (ims)
ISSN 1017-060X
volume 35
issue No. 1 2011
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023